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HEAT TRANSFER IN THE THERMA LLY STABILIZED SECTIONS OF CHANNELS

WITH A LAMINAR NON-NEWTONIAN FLUID FLOW
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An approximate method is described for solving the problem of heat
transfer for laminar non-newtonian fluid flow in the thermally stabil-
ized sections of a plane channel and a circular tube under conditions
of constant wall temperature.

Non-newtonian fluids are met with in various tech-
nical applications, The basic hydrodynamic feature of

the behavior of these fluids is the fact that their mo-
tion cannot be described in accordance with the new-
tonian hypothesis of a linear relation between stress
and rate of strain

I )
dr "

For non-newtonian fluids the relation between
stress and shear rate is nonlinear.

Various rheological laws of flow of non-newtonian
fluids are known. The most widely used of these is
the so-called power law, which may be written in the
empirical form [1]

du
dr

=K @)

where K and n are individual rheological constants of
the substance; if K depends strongly on temperature,
the quantity n varies to a much lesser degree and can
often be considered constant., When n is 1 we have an
ordinary newtonian fluid.

for a plane channel
PR 3)
for a circular tube
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with appropriate boundary conditions.

For stabilized flow of a non-newtonian fluid, by
integrating (2) and using the boundary condition that
when h = H or r = R the velocity u of the liquid is 0,
we may establish the relation between the flow ve-
locity and the mean velocity U over the section [2]:

for a plane channel
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Solution of differential equations (3) and (4) for
arbitrary values of n is very difficult. An approxi-
mate solution of this equation is given below, using
integral relations in the form of a heat content bal-

In spite of the fact that over a wide range of values
of shear rate du/dr the simple rheological power law
(2) does not, as a rule, describe the flow of real non-
newtonian fluids, the law is applicable to many non-
newtonian fluids over a certain range, e.g., to poly-
mer solutions and melts, and it is widely used in var-
ious technical calculations [2].

The present paper obtains an approximate theoreti-
cal solution to the problem of heat transfer in the lam-
inar flow of a non-newtonian fluid obeying law (2) in i
the thermally stabilized sections of a plane channel
(flow between two parallel infinite planes) and a cir-
cular tube under conditions of constant wall tempera-
ture,

The solution has been obtained on the following as-
sumptions: the stream is hydrodynamically stabilized; !

o=@, {1y —ty) .

tion

or, in dimensionless form,

ance for the plane channel and the circular tube,
Plane channel. The heat transfer coefficient may
be found from the well-known expression

0

The mean fluid temperature is found from the equa-

w(h)t (h)dh, ()

heat transmission in the axial direction is insignifi- ‘m = j‘ ufh) 1% d <L> {9)
cant; the physical properties of the fluid are constant Iy k u lw f
at any point in the flow; the heat resulting from en-
ergy dissipation is negligibly small. Taking into account that
In theory the temperature profile, and therefore
the heat transfer relations, may be found from the so- - ot (10)

lution of the differential energy equation: on’
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Fig, 1. Distribution of velocity and temperature over a) plane

and b) circular channels in the stabilized section of a laminar

flow of non-newtonian fluid: I) the relation t(h/H)/tyw = f(h/H);

) uk/H)/u = fh/H); OI) t(r/R)/tw = f(r/R); IV) u(r/R)/U =
= f(r/R); 1) when n=0; 2) 1; 3) «,
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Fig. 2. Dependence of heat Fig.3. Nusselt number for a thermally stabil-
flux q/qy, on the dimension- ized laminar stream of non-newtonian fluid in
less coordinate £: I) fora 1) a plane channel, and 2) a circular tube.

plane channel; II) for a cir-
cular tube; 1) with n = 0;
2)1; 3) =,
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and integrating this expression, we obtain

i

tw=ng_d(£)‘ (11)
Ao gy H

0
Substituting (9) and (11) into (7), and bringing it into
dimensionless form, we write

1

Nu=g%]i: 4 /(1_%)5;‘7;4%). a2)

It follows from (9) and (11) that the témperature
profiles for ty, and ty may be found, if we know the
nature of the variation of q/qy, over the height of the
channel. This may be found from the equations of heat
balance and the condition of similarity of temperature
profiles for the stabilized section, i.e.,

fl(t)= kfz(t)-

These conditions, along with the Fourier equation,
give the following system of equations, written in di-
mensionless form:

’ 13)

B) 122 gy, (15)

This system of equations is solved hy a successive
approximation method. Putting q/qy, = 1 in the first
approximation and calculating t(¢)/ty, according to
(15), we find the value of q/qW in the second approxi-
mation from (14). The successive approximation pro-
cess is very simple, and the solution quickly converg
es, The difference between the third and fourth ap-
proximations to the relation q/qW = f(¢) is about 0,5%.
It is therefore sufficient to limit the calculation to
the third approximation,

Following solution of the problem in general form,
the formulas for temperature profiles and Nusselt
number according to the third approximation have the
form
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Circular channel. This problem is similarly treat-
ed. In this case the initial system of equations takes
the form

Q _ 4
Qy

(18)
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Values of the mean temperature and Nu number are
determined from the formulas
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Following solution in general form, in the case of
a circular channel the formulas for temperature pro-
file and Nusselt number, in the third approximation,
have the form
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The results of the velocity and temperature profile
calculations according to (5), (6), (16), and (23) are
shown in Fig. 1. Comparison of the temperature and
velocity profiles shows that the velocity profiles for
various values of the exponent n differ appreciably,
while the temperature profiles scarcely change with
change of n from 0 to «. This is very important in
analytical examination of the influence of variation
of physical properties of the fluid on heat transfer and
resistance,

Figure 2 shows the variation of heat flux as a func-
tion of the relative coordinate £. Because of reduction
of the area of heat transfer to the tube axis, the rela-
tion q/qy, = f(r/R) has a maximum, corresponding to
the bend in the temperature profile (the point a in Fig.
1b). For a plane channel the relation q/qy, = fh/H)
has no maxima.

Figure 3 shows values of stabilized Nusselt number
for various values of the rheological constant n, cal-
culated from (17) and (24),

For convenience in calculating the heat transfer in
the thermally stabilized section of a channel in a lam-
inar flow of non-newtonian fluid, relations (17} ana (24)
obtained for the Nu number may be approximated by
the simpler expressions:

for a plane channel

Nu = 9.84 — 2.9/(0.262 + 1; ©5)

for a circular tube

Nu = 1/[0.373 — 0.2 (n = I}{(n + 3)]. {26)

To illustrate the accuracy of the calculation, we
shall compare values of the Nusselt number calcu-
lated according to (25) and (26), or, equivalently, ac~
cording to (17) and (24), with exact theoretical solu-
tions for the limiting cases n = 1 (newtonian fluid,
parabolic velocity profile) and n = « (piston flow) [3, 4]
(see table),

It follows from the table that the method of solution
developed and the formulas obtained allow calculation
of the heat transfer with sufficient accuracy.
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Values of Nusselt Number
Nusselt number
Channel Velocity ;
. exact approximate
shape proflle ) )
solution solution
Plan i == const 9.87 9.84
€ parabola 7.56 7.54
: = const 5.78 5.78
Circular parabola 3.66 } 3.66
NOTATION

i—temperature of fluid; t,,~channel wall temperature; dy,~—heat
flux at channel wall; x—coordinate directed along the flow; h—coor-
dinate directed across the flow, computed from center-line of plane
channel; r—coordinate in the direction of the tube radius, calculated
from tube axis; &- dimensionless coordinate; 2H~— channel height;
2R—tube diameter; U~mean fluid flow velocity; a—thermal diffusiv~
ity; A~thermal conductivity.
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